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A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the pre-
diction of steady turbulent non-premixed compressible combusting flows in three space
dimensions. The parallel solution-adaptive algorithm solves the system of partial-differen-
tial equations governing turbulent compressible flows of reactive thermally perfect gas-
eous mixtures using a fully coupled finite-volume formulation on body-fitted multi-
block hexahedral meshes. The compressible formulation adopted herein can readily
accommodate large density variations and thermo-acoustic phenomena. A flexible block-
based hierarchical data structure is used to maintain the connectivity of the solution blocks
in the multi-block mesh and to facilitate automatic solution-directed mesh adaptation
according to physics-based refinement criteria. For calculations of near-wall turbulence,
an automatic near-wall treatment readily accommodates situations during adaptive mesh
refinement where the mesh resolution may not be sufficient for directly calculating near-
wall turbulence using the low-Reynolds-number formulation. Numerical results for turbu-
lent diffusion flames, including cold- and hot-flow predictions for a bluff-body burner, are
described and compared to available experimental data. The numerical results demon-
strate the validity and potential of the parallel AMR approach for predicting fine-scale fea-
tures of complex turbulent non-premixed flames.

Published by Elsevier Inc.
1. Introduction

With the recent advances in computational fluid dynamics (CFD) and numerical methods for combusting flows, as well as
advances in high-performance-computing hardware, numerical modeling has become an important, powerful, and effective
tool for the design of advanced combustion systems. The reliance on numerical modeling has also increased with the increas-
ingly stringent emission legislation imposed by governments worldwide, as the latter has made the combustor and engine
design process much more challenging.

Virtually all practical combustion systems involve turbulent combustion. Moreover, pollutant and particulate emissions
are controlled by the details of the fuel–air mixing and combustion processes. For these reasons, a detailed understanding of
the strong nonlinear interaction between the turbulent flow structure, chemical kinetics, and thermodynamic properties of
the reactants and products is required to obtain improved low-emission combustor designs. Note that there are a wide range
of existing combustion configurations in which the fuel and oxidizer are initially separated and this provides some of the
rationale for emphasizing non-premixed combustion process in the present study.
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Three primary tools for performing simulations of turbulent combusting flows have emerged: (i) direct numerical simu-
lation (DNS); (ii) large-eddy simulation (LES); (iii) and Reynolds- or Favre-averaged Navier–Stokes (RANS) simulation tech-
niques, each possessing various advantages and disadvantages [1,2]. In DNS, all of the turbulent and chemical length and
time scales are fully resolved. For this reason, DNS is a powerful tool for studying turbulent flame structure and turbu-
lence/chemistry interactions in detail. However, despite the successes to date, DNS is generally restricted to generic simpli-
fied and/or more academic combustor configurations due to the very high computational costs of fully resolving all solution
scales, both turbulent and chemical. It will probably not be used to simulate turbulent combustion phenomena in practical
combustor configurations with complex geometry any time in the near future. LES is an alternative to DNS in which the large
energy containing structures or eddies are computed directly and the small, generally more universal, dissipative, turbulent
scales are modelled, thereby offering potential computational savings [3,4]. Nevertheless, universal and accurate sub-filter
scale models for non-premixed and premixed reacting flows are not currently available and the accurate and reliable numer-
ical solution of the filtered Navier–Stokes equations remains a significant computational challenge for many practical prob-
lems. RANS-based methods are the predominant approach in engineering CFD applications for combusting flows involving
complex flow geometries [5]. Moreover, this situation is not expected to change in the near future. Nevertheless, in spite of
simplifications offered by time-averaging approaches, the system of time-averaged equations governing turbulent combust-
ing flows can be both large and stiff and its solution can still place severe demands on available computational resources. In
particular, approaches are required to reduce the computational costs of simulating combusting flows using RANS-based
methods, thereby permitting their application on a more routine basis to a wider range of problems.

One successful approach is to make use of solution-directed mesh adaptation, such as the adaptive mesh refinement
(AMR) algorithms, originally proposed by Berger and Oliger for computing time-dependent solutions to hyperbolic par-
tial-differential equations (PDEs) in multiple space dimensions [6]. Computational grids are automatically adapted to the
solution of the governing equations and this can be very effective in treating problems with multiple scales, providing
the required spatial resolution while minimizing memory and storage requirements. AMR approaches have since been devel-
oped for a wide variety of engineering problems [7–23] and combustion simulations [24–39]. Large massively-parallel dis-
tributed-memory computers provide another approach by enabling a many fold increase in processing power and memory
resources beyond those of conventional single-processor computers. These parallel computers provide an obvious avenue for
greatly reducing the time required to obtain numerical solutions of combusting flows [40–45]. A combination of these two
strategies to produce a parallel AMR method that both reduces the overall problem size and the corresponding time to cal-
culate a solution would seem very desirable. Recent progress in the development and application of parallel AMR algorithms
for low-Mach-number reacting flows and premixed turbulent combustion is described by Day and Bell [46–49]. Gao and
Groth [50] have also proposed a parallel block-based AMR method using body-fitted multiblock meshes for application to
turbulent non-premixed combusting flows. The success of the block-based approach for body-fitted multiblock meshes
prompted Gao and Groth to consider the extension of the parallel algorithm for combusting flows to three dimensions.

This paper is structured as follows. In Section 2, the system of governing equations for a compressible thermally perfect
reactive mixture of gases is presented. In Section 3, the main elements of the finite-volume scheme are given. Section 4 desc-
ribs the time-marching scheme. Sections 5 and 6 present details on the proposed parallel adaptive mesh refinement scheme
developed herein. A partial numerical verification of the algorithm is carried out in Section 7. In Section 8, the solutions for a
bluff-body burner are compared to experimental results. Finally, some conclusions are drawn.
2. Mathematical modelling

2.1. System of governing equations for turbulent combusting flows

A mathematical model based on the Favre-averaged Navier–Stokes equations for a compressible thermally perfect reac-
tive mixture of gases has been formulated and is used herein to describe turbulent non-premixed combustion processes. In
this formulation, the continuity, momentum, and energy equations for the reactive mixture of N species are
@q
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where q is the time-averaged mixture density,~u is the Favre-averaged mean velocity of the mixture, p is the time-averaged

mixture pressure, I
�

is the identity tensor, e ¼ j~uj2=2þ
PN

n¼1cnhn � p=qþ k is the Favre-averaged total specific mixture energy
with hn being the species enthalpy, k is the specific turbulent kinetic energy, and Dk is the coefficient for the diffusion of the
turbulent energy ðDk ¼ lþ l tr�Þ. In addition, l is the total molecular viscosity of the mixture, lt is turbulent eddy viscosity,

r� is a turbulence model constant, ~~s and ~~k are the molecular and turbulent Reynolds stress tensors (dyads), respectively, and
~q and ~qt are the molecular and turbulent heat flux vectors, respectively. The mixture pressure is given by the ideal gas law
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p ¼
PN

n¼1qcnRnT , where Rn is the species’ gas constant and T is the mixture temperature. The molecular fluid stress tensor is

defined as ~~s ¼ 2lð
~
S
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is the mean strain rate tensor. The transport equation describing the time evolution
of the species mass fraction, cn, is given by
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where _wn is the time-averaged or mean rate of the change of the species mass fraction produced by the chemical reactions

and J
!

n and J
!

tn are the molecular and turbulent diffusive fluxes for species n, respectively. The molecular heat flux and the
laminar diffusive species flux are modelled using Fourier’s and Fick’s laws, respectively:
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where j is the thermal conductivity of mixture, Dn is the molecular diffusivity of species n relatively to the major species
and obtained from the given Schmidt number, Sc, using the relation of Dn ¼ l=qSc, and hn is the absolute (chemical and
sensible) internal enthalpy for species n. The turbulent heat flux and the turbulent species flux are modelled in a similar
fashion to their molecular counterparts. Introducing the turbulent Prandtl and Schmidt numbers, Prt and Sct, both of
which are taken to be constant (Prt ¼ 0:9 and Sct ¼ 1), assume thermal conductivity, jt ¼ ltcp=Prt, and turbulent diffusiv-
ity of species n, Dtn ¼ lt=qSct. Note that employing constant values for turbulent Prandtl/Schmidt numbers over the do-
main of interest assumes that the scalar fluctuations are proportional to the local velocity fluctuations. If a uniform
proportionality constant can be applied, then no further equations need to be solved. However, the assumption of constant
values of turbulent Prandtl and Schmidt numbers becomes problematic as the flow becomes more complex and, in gen-
eral, substantive variations of these parameters in different regions of the flow are to be expected. For flows where high
Mach-number compressibility effects must be considered and variations due to compressibility can occur for both turbu-
lent Prandtl and Schmidt numbers, models that allow for variable turbulent Prandtl- and Schmidt-numbers may be
required.

The turbulence modelling closure adopted in this work is the k-x model. In the k-x model, the turbulent eddy viscosity is
prescribed by lt ¼ qk=x. Transport equations are solved for turbulent kinetic energy, k, and the specific dissipation rate, x,
given by
@

@t
ðqkÞ þ ~r � ðqk~uÞ ¼ ~~k : ~r~uþ ~r � ½ðlþ ltr
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~~k : ~r~uþ ~r � ½ðlþ ltrÞ~rx� � bqx2; ð8Þ
where r�; b�; a;r, and b are closure coefficients for the two-equation model [51].
Both low-Reynolds-number and wall-function formulations of the k–x model are used for the treatment of near-wall tur-

bulent flows, with a procedure for automatically switching from one to the other, depending on mesh resolution. In the case
of the low-Reynolds-number formulation, it can be shown that limy!0x ¼ 6m

by2, where y is the distance normal from the wall

[51]. Rather than attempting to solve the x-equation directly, the preceding expression is used to specify x for all values of
yþ 6 2:5, where yþ � usy=m. Note that us is the friction velocity defined by u2

s ¼ sw=q where sw is the wall shear stress. Pro-
vided there are 3–5 computational cells inside yþ ¼ 2:5, this procedure reduces numerical stiffness, guarantees numerical
accuracy, and permits the k–x model to be solved directly in the near-wall region without resorting to wall functions. In
the case of the wall-function formulation, the expressions
k ¼ u2
sffiffiffiffiffi
b�o

p ; x ¼ usffiffiffiffiffi
b�o

p
jy

; ð9Þ
are used to fully specify k and x for yþ 6 30� 250, where b�o is a closure coefficient, 9/100, and j is the von Kármán constant,
0.41.

In this research, a procedure has also been developed to automatically switch between these two approaches, depending
on the near-wall mesh resolution. In this procedure, the values of k and x are approximated by
k ¼ u2
sffiffiffiffiffiffi
bI

o

q minðyþ;30Þ
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� �2
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where xo ¼ 6m
boy2 ðbo ¼ 9=125Þ and xwall ¼ usffiffiffiffi

b�o
p

jy
. This automatic near-wall treatment readily accommodates situations during

adaptive mesh refinement where the mesh resolution may not be sufficient for directly calculating near-wall turbulence
using the low-Reynolds-number formulation.
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2.2. Thermodynamic and transport properties, chemical kinetics and turbulence/chemistry interactions

Thermodynamic relationships and transport coefficients are also required to close the system of equations given
above. Thermodynamic and molecular transport properties of each gaseous species are prescribed using the empirical
database compiled by Gordon and McBride [52,53], which provides curve fits for the species enthalpy, hn; specific heat,
cpn; entropy; viscosity, ln; and thermal conductivity, jn, as functions of temperature, T. The Gordon–McBride data set
contains curve fits for over 2000 substances, including 50 reference elements. The molecular viscosity, l, and thermal
conductivity, j, of the reactive mixture are determined using the mixture rules of Wilke [54] and Mason and Saxena
[55], respectively.

The primary goal of this research is to establish a computational framework for predicting complex reacting flows in
practical combustor geometries. For this purpose, the use of simplified chemical mechanisms for gaseous fuels and turbu-
lence–chemistry interaction models has allowed for the validation of the proposed solution algorithm without the added
complexities and computational overhead of more complex mechanisms and sophisticated turbulence–chemistry interac-
tion models.

For the gaseous methane–air combustion considered in the present work, the following reduced, one-step, five-species,
chemical kinetic scheme of Westbrook and Dryer [56] is used. The five species are methane ðCH4Þ, oxygen ðO2Þ, carbon diox-
ide ðCO2Þ, water ðH2OÞ, and nitrogen ðN2Þ. Nitrogen is taken to be inert.

The mean reaction rates, _xn, in Eq. (4) describe the mean production and consumption of each of the chemical species due
to the chemical reactions and strong interactions between turbulence and chemistry. The accurate prediction of mean reac-
tion rates, which can be strongly influenced and enhanced by small-scale turbulent mixing, represents the central problem
and challenge of turbulent combustion. The interaction between turbulence and chemical reactions is best characterized in
terms of the turbulent Damköhler number, which is defined as the ratio of the characteristic turbulent flow time, st, to the
characteristic chemical time, sc, i.e., Da ¼ st

sc
.

The Arrhenius approach can be used to describe the mean reaction rates (kinetically controlled) for chemical species by
neglecting the effects of turbulence on combustion. The formula for the mean reaction rate for species n is given by
_xn ¼
Mn

q
XNr
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; ð11Þ
where m0n;r and m00n;r are the stoichiometric coefficients for the reactants and for the product (related to species n in reac-
tion r), respectively, Mi is the molecular mass of species i, jf ;r and jb;r are forward and backward reaction rates, respec-
tively, and Nr is the total number of reactions. The Arrhenius approach is only applicable for turbulent combustion at
very low Damköhler numbers (i.e., Da� 1 and so sc � st), under which conditions the reactants mix rapidly and burn
slowly.

For high Damköhler number, the eddy dissipation model is adopted. For non-premixed flames, Magnussen and Hjertager
[57] proposed the following eddy dissipation model for estimating the mean reaction rates:
_xF ¼ �Cedm
1
st

min cF;
cO

s
; b

cP

ð1þ sÞ

� �
; ð12Þ
where model constants, Cedm and b can be adjusted to incorporate various chemical features. In this study, Cedm ¼ 4:0 and
b ¼ 0. Clearly, the reaction rate is limited by the deficient species and the turbulence mixing time. When b–0, the products
can also limit the rate since ‘‘this accounts for the burnt gases bringing the energy to burn the fresh reactants” [58]. The tur-
bulent time scale, st, is estimated from the dissipation rate per unit turbulent kinetic energy, x, and given by st / 1

x. The eddy
dissipation model is manifestly easy to adopt for computational implementation because the reaction rate is calculated using
mean quantities of temperatures and mass fractions without additional transport equations. In this work, the individual spe-
cies mean reaction rate is taken to be the minimum of the rates given by the finite-rate chemical kinetics (i.e., the law of
mass action and Arrhenius reaction rates, Eq. (11)) and the EDM value (Eq. (12)) due to regions with different turbulence
levels.

3. Finite-volume method

Applying the divergence theorem to the differential form of the system of governing equations (Eqs. (1), (2), (3), (4), (7)
and (8)), one arrives at the integral form
d
dt

Z
VðtÞ

UdV þ
I

XðtÞ
~n � F

!
dX ¼

Z
vðtÞ

SdV ; ð13Þ
where U is the vector of flow solution variables, F
!

is the flux dyad, S is the source vector, V is the control volume, X is the
closed surface of the control volume, and~n is the unit outward vector normal to the closed surface. The solution vector, U, is
given by ½q;qvx;qvy;qvz;qe;qk;qx;qc1; . . . ;qcN �T. The flux dyad is given by F

!
¼ ðF� Fv;G� Gv;H�HvÞ, where F and FV ;G

and Gv, and H and Hv are the inviscid and viscous flux vectors in the x, y and z directions, respectively, and the source in-
cludes terms associated with the turbulence modelling, St, and finite-rate chemical kinetics Sc.
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Finite-volume method is applied to the integral form of the governing equations (Eq. (13)) and integrated over hexahedral
cells of a structured body-fitted multi-block hexahedral mesh. In doing so, the original PDEs are then converted to a set of
coupled ODEs which can be expressed as
dUi;j;k

dt
¼ � 1

Vi;j;k

XNf

m¼1

F
!

i;j;k;m
�~ni;j;k;mDAi;j;k;m þ ðSt þ ScÞi;j;k ¼ Ri;j;kðUÞ; ð14Þ
where Vi;j;k is the cell volume, Nf is the total number of cell faces, and ~ni;j;k;m and DAi;j;k;m are the unit outward normal vector
and the area of cell-face m, respectively. The numerical fluxes though the cell boundaries include contributions from both
hyperbolic and elliptic (inviscid and viscous) terms.

A higher-order Godunov-type finite-volume upwind formulation based on approximate Riemann solvers with a least-
squares piece-wise limited linear solution reconstruction procedure is used to evaluate the hyperbolic solution flux. For
higher-order accuracy, a spatial reconstruction of the solution in each computational cell is required. The values of the left
and right solution states at a cell interface are determined by least-squares piece-wise limited linear solution reconstruction.
To limit the solution gradient in order to ensure solution monotonicity, both the Barth-Jespersen [59] and the Venkatakrish-
nan [60] slope limiters have been implemented in this algorithm. This research considers both the Roe’s and the Harten–Lax-
van Leer Einfeldt (HLLE) approximate Riemann solvers and details related to these two solvers can be found in the literature
[61–63].

Evaluation of the viscous (elliptic) component of the numerical flux depends on both the solution state and its gradients
at the cell interfaces. The evaluation of the gradients for the primitive variables at the cell interface involves the procedure of
Green–Gauss integration over the diamond path [64] using the linearity-preserving weighting function derived by Holmes
and Connell. The edges of the diamond path for three dimensions are replaced by surfaces. However, the extension of the
procedure is not straightforward due to the fact that the face tangential vectors are not uniquely defined for most hexahedral
mesh. In this research work, the cell-face gradients are evaluated using the formula proposed by Mathur and Murthy [65].
4. Time marching scheme

The coupled system of nonlinear ODEs (Eq. (14)) resulting from the finite-volume spatial discretization can be integrated
forward in time using a time-marching method, thereby obtaining a time-accurate solution for unsteady problems. For stea-
dy-state calculations performed as part of this study, a time-marching method can also be considered to remove the tran-
sient portion of the solution as quickly as possible until the solution is sufficiently close to the steady state. Time accuracy is
not required in this case. The time-marching scheme is based on the optimally-smoothing multi-stage time-marching
scheme developed by van Leer et al. [66]. The general M stage optimally smoothing time-marching scheme for integrating
Eq. (14) from the time level n to time level nþ 1 can be written as
m stage :

U0
i;j;k ( Un

i;j;k

Um
i;j;k ( U0

i;j;k � amDtnRi;j;kðUm�1Þ for m ¼ 1; . . . ;M

Unþ1
i;j;k ( UM

i;j;k

8>><
>>: ;
where Dtn ¼ tnþ1 � tn is the size of the time step and am are multi-stage coefficients. The coefficients used here have been
selected to optimize the high-frequency damping for first- and second-order upwind discretizations of the scalar advection
equation in multigrid applications [66]. They are not optimized for diffusion problems or viscous flows. Kleb et al. [67] sug-
gested a set of varying multistage coefficients for viscous flows and their adaptive application to multigrid relaxation. Having
the coefficients vary with local cell Reynolds number should be beneficial for the turbulent flows. However, this form of opti-
mized time-marching scheme was not considered as part of this work.

The source terms associated with finite-rate chemistry and turbulence modeling are usually responsible for much of the
numerical stiffness in the resulting discretized system of equations. The use of semi-implicit time integration can be utilized
to cope with the stiffness of the system. This method treats source terms implicitly, while treating the fluxes explicitly.
Hence, this method avoids solving the large block matrices associated with the fully implicit scheme. The semi-implicit form
couples with the multistage scheme by replacing the update-stage of the multistage scheme as
I
�

�mamDtn @Sð0Þ

@U

" #
DUm

i;j;k ¼ mamDtnRi;j;kðUðm�1ÞÞ; ð15Þ
where I
�

is the identity matrix, DUm ¼ Um � U0 is the solution change, and @Sð0Þ
@U is the source Jacobian term. A local linear sys-

tem of equations is then solved to obtain the solution change using a dense matrix solver. Here, we used a LU decomposition
followed by forward and backward solution procedures of the resulting triangular systems.

The inviscid Courant–Friedrichs–Lewy stability, viscous von Neumann stability, and turbulent and chemical time step
constraints are imposed when selecting the time step. Note that, for reacting flows, the inverse of the maximum diagonal
of the chemical source term Jacobian is added to the time step calculation. The time step, Dtn, is then determined by
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; ð16Þ
where CFL is the inviscid Courant–Friedrichs–Lewy stability (CFL 61), Dl is the cell-face length of a cell, c is the sound speed,
and l and lt are molecular viscosity and turbulent eddy viscosity, respectively, and where v and w are scaling factors.
5. Adaptive mesh refinement algorithm

AMR is a powerful tool for computing solutions to PDEs whose solutions have disparate spatial scales. Currently, several
different AMR strategies have emerged. These approaches can be classified into four broad categories depending on the par-
titioning algorithm used and/or the data structure that is adopted to keep track of the mesh connectivity. They are as follows:
(1) ‘‘patch-based”, (2) ‘‘cell-based”, (3) ‘‘block-based”, and (4) ‘‘hybrid block-based” AMR techniques. Each of these strategies
is now briefly reviewed in turn below and compared to one another. The advantages and disadvantages of each strategy are
also discussed.

Berger, Oliger and Colella [6,7] developed an algorithm for dynamic gridding, now more generally referred to as patch-
based AMR. The algorithm begins with the entire computational domain covered with a coarsely resolved base-level regular
Cartesian grid. As the calculation progresses, individual grid cells are tagged for refinement. The patch-based AMR strategy
relies on a fairly sophisticated algorithm, laid out by Berger [68], to organize a collection of individual grid cells into properly
nested rectangular patches. The mesh within these newly farmed patches can then be further refined, creating additional
patches.

In cell-based AMR, as proposed and developed for example by Powell and co-workers [9,69] and Berger and Aftomis [70–
72], each cell can be refined individually and each cell is stored using a tree data structure. This cell-based tree structure is
flexible and readily allows for the local refinement of the mesh by keeping track of the computational cell connectivity as
new grid points are generated from the refinement process. Virtually all cell-based approaches are based on Cartesian
meshes. In many cell-based approaches, cut cells are generally used to treat complex geometry and very efficient AMR
schemes have been devised using this boundary treatment. However, discretization of elliptic operators on Cartesian cut
cells can be challenging [64] and applications are generally restricted to hyperbolic systems.

Another AMR approach for treating more complex geometries with curved boundaries is based on composite overlapping
grids used together with AMR. In this case, curvilinear grids that conform to the curved boundaries are used together in an
overlapping fashion with one or more Cartesian grids that fill the interior of the domain. In essence, a Chimera overlapping
grid [73] technique is combined with AMR. Chesshire [74] and Henshaw [75–77] demonstrated that AMR on overlapping
grids can lead to an efficient approach for solving problems with multiple space and time scales for complex geometry. A
main challenge of this AMR approach is to determine the physical grid point in terms of mapping when refining body-fitted
grids. The mapping is used to define grid points at any desired resolution as required when a grid is refined. Re-gridding for
each base grid is necessary during the adaptation process and the grid information such as connectivity and those grids hid-
den by refined grids, has to be re-generated and stored. In general, some care is required during the re-gridding for the inter-
polation between different base grids and/or between grids with different levels to ensure that accurate values are obtained.
Global conservation properties are also difficult or impossible to enforce discretely with this overlapping grid approach.

In a block-based AMR strategy, mesh adaptation is accomplished by the dividing and coarsening of appropriate solution
blocks. In general, each block also has an equal number of cells. The basic data structure is then a tree (quadtree for two
dimensions and octree for three dimensions), where any block that requires refinement generates a number of equal sized
blocks when a resolution change of two is assumed. The block-based AMR strategy results in a rather light tree data structure
for prescribing the connectivity between blocks as compared to the tree structure generally used for tracking cell connectiv-
ity in the cell-based methods. In addition, the block-based data structure naturally lends itself towards an efficient and read-
ily scalable parallel implementation. It amortizes the overhead of communication over entire blocks of cells, instead of over
single cells as in cell-based data structures. However, generally larger numbers of refined cells can be created (i.e., typically
more than the corresponding number of cells used in cell-based tree data structures) thereby possibly increasing the amount
of computational work and storage space needed to solve a given problem. Applications of the block-based approach on
Cartesian mesh are described by Quirk [11], Berger [12], Gombosi and co-workers [78–81]. Groth and co-workers [82–84]
have since extended the approach developed by Groth et al. for computational magnetohydrodynamics [85,86,21] and devel-
oped a flexible block-based hierarchical data structure to facilitate automatic solution-directed mesh adaptation on multi-
block body-fitted (curvilinear) meshes for complex flow geometries. While introducing some added complications, the use of
body-fitted meshes permits more accurate solutions near boundaries, enables the use of anisotropic grids with grid point
clustering and stretching, and allows for better resolution of thin boundary and mixing layers. Furthermore, unlike the over-
lapping AMR approaches, conservation properties of the solution scheme are readily enforced discretely.

Holst and Keppens [87] applied a hybrid block-based AMR approach to general curvilinear coordinate systems, modifying
the full tree data structure to allow for incomplete block families (not all children are created; the usual block-based AMR
always has complete families of 2, 4, or 8 children depending on dimensionality) and incorporating the ideas of patch-based
strategies. This hybrid AMR strategy requires two means to traverse the grid hierarchy, e.g., there is a doubly linked list
of grid pointers per level in addition to the tree data structure. Thus, the mixed data structure further complicates the
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neighbour search algorithm in three-dimensions. Holst and Keppens [87] compared the three AMR strategies, i.e., a patch-
based, a tree block-based, and a hybrid block-based, for a smooth two-dimensional advection test problem on a doubly peri-
odic domain with a second-order numerical scheme, and found that the block-based AMR approach is the most efficient in
terms of the execution speed for the same accuracy. However, it should be kept in mind that the applications considered by
Holst and Keppens were mainly two-dimensional and were restricted to classical and relativistic MHD simulations.

In our work, a block-based AMR strategy will be developed for combusting flow applications, as this strategy appears to be
somewhat more computationally efficient with respect to parallelization aspects and memory requirements than cell-based
AMR. The resulting block-based AMR technique allows for anisotropic grids for resolving thin shear and boundary layers and
makes use of a flexible hierarchical tree data structure for the treatment of complex grid topologies having unstructured block
connectivity. In addition, a novel low-cost and computationally efficient technique has also been proposed for the generation
of refined body-fitted or curvilinear grid blocks which must be determined as part of the AMR process. Further, although not
considered here, this approach is also well suited for solving large systems of PDEs, such as those encountered in turbulent
combusting flows with a preconditioned Krylov subspace iterative scheme. Newton–Krylov method exploits the block struc-
ture of the grid to produce a very efficient parallel implementation of a fully implicit time-marching scheme.

The implementation of the AMR procedure in the proposed algorithm involves the following steps:

(1) evaluation of the refinement measures for each solution block and marking of solution blocks for refinement and
coarsening;

(2) assessment of the refinement levels for all solution blocks to ensure that the refinement ratio between adjacent blocks
is no greater than 1:2;

(3) removal of solution blocks associated with coarsening of grid;
(4) addition of ‘‘leaves” representing new children solution blocks in the tree data structure;
(5) update of block connectivity and block information used in sharing solution data between blocks;
(6) carry out actual coarsening and refinement of blocks marked for a resolution change with a redistribution of the chil-

dren solution blocks among the processors to ensure load balancing.
5.1. Refinement and coarsening of solution blocks

The finite-volume scheme described above is applied to multi-block body-fitted mesh in which the grid is composed of a
number of structured blocks. Each of these structured blocks of the computational mesh consists Ni 	 Nj 	 Nk hexahedral
cells, where Ni, Nj and Nk are even integers greater than or equal to four. The values of Ni; Nj and Nk are not necessarily
the same for each block; however, the use of unstructured root block connectivity (described later in this section) imposes
some constraints on the relationships between Ni; Nj and Nk for each of the grid blocks. Furthermore, having the same num-
ber of computational cells in each grid block greatly facilitates the parallel implementation of the algorithm as shall be seen.

Mesh adaptation is accomplished by dividing and coarsening of appropriate grid blocks. In regions requiring increased
cell resolution, a ‘‘parent” block is refined by dividing itself into eight ‘‘children” or ‘‘offspring” in three dimensions. Each
of the eight children of a parent block becomes a new block having the same number of cells as the parent and thereby dou-
bling the cell resolution in the region of interest. This refinement process can be reversed in regions that are deemed over-
resolved and eight children are coarsened or merged into a single parent block. The refined grid can be coarsened or de-re-
fined by reversing the division process and merging eight blocks into one. The grid adaption is constrained such that the grid
resolution changes by only a factor of two between adjacent blocks and the minimum resolution is not less than that of the
initial mesh. Once the grid is refined, standard multigrid-type restriction and prolongation operators are used to evaluate the
solution on all blocks created by the coarsening and division processes, respectively.

A key operation in the proposed block-based AMR procedure is the generation of the mesh points in the refined grid
blocks from the initial mesh. The proposed grid refinement technique using grid metrics proves to be very effective in pre-
serving the original mesh point clustering in the body-fitted mesh and maintaining the smoothness and locations of the grid
lines in the mesh.

In the proposed grid refinement procedure, it is assumed that the nodal locations in the physical domain,~x ¼ ðx; y; zÞ, can be
mapped onto a uniformly spaced Cartesian computational domain, ðn;g; fÞ. The physical location of the additional nodes in the
refined grid can then be computed using Taylor approximation theory and the grid metrics. Specifically, the refined nodes along
the edges, on the faces, and along the center of the volume are calculated using a Taylor series expansion truncated to second-
order for the node locations in physical space in terms of the coordinates, n; g; f, of the computational space given by
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Approximate expressions for the various derivatives appearing in Eq. (17) are required. The first derivatives @~x
@n ;

@~x
@g ;

@~x
@f, are

estimated using second-order-accurate forward/backward finite-difference formulae for boundary nodes and second-order-
accurate centre difference for interior coarse nodes. As shown in Fig. 1(a), the first derivatives are computed at the coarse

nodes of the original mesh which are represented by solid-filled circles. The second-order derivatives, @
2~x
@n2 ;

@2~x
@g2 ;

@2~x
@f2, are com-

puted for each midpoint on the edge (labelled with non-filled circles) based on finite differences of the first derivatives. These
expressions are used to approximate the second derivatives for any vertex on the edge as follows:
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Mixed derivatives, @2~x
@n@g ;

@2~x
@n@f ;

@2~x
@g@f ; are computed at the face centroid (labelled with shaded square in Fig. 1(a)) from coarse-

grid vertex information (labelled with solid-filled circles). These values would be used to approximate the mixed derivatives
at the coarse nodes on the face. The mixed derivatives for the four coarse nodes on a face as shown in Fig. 1(b) are approx-
imated by
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However, an averaging procedure used to estimate the refined nodes on each face and at volume centroid described below
results in the cancellation of the mixed derivatives and, in practice, the mixed derivatives are not required nor computed. The
averaging procedure and the cancellation of the mixed derivatives due to this averaging procedure are demonstrated next.

A second-order averaging procedure is used to combine the Taylor series expansions, Eq. (17), at each of the four nodes of
a given coarse face when evaluating the new mesh points of the fine grid. For a midpoint along the edge (for example, see
Fig. 1(b)), its physical location,~xðnþ Dn

2 ;g; fÞ, is determined by averaging the two approximated locations obtained using Tay-
lor expansion (Eq. (17)) from its left and right coarse nodes, ~xðn;g; fÞ, and ~xðnþ Dn;g; fÞ, respectively. For the centroid of a
face, values from four coarse nodes are averaged, and similarly, for the center of the volume, values from eight coarse nodes
are averaged. Note again that the mixed second derivatives cancel out during the averaging process for faces and volumes,
obviating the need to compute them.

The performance of the proposed mesh refinement scheme based on the grid metrics can be assessed by comparing re-
fined meshes generated by the second-order averaging procedure and grid refinement based on straightforward linear inter-
polation. Linear interpolation is performed by averaging the adjacent coarse-grid vertex coordinates. Fig. 2(a) depicts a
refined grid obtained via the linear interpolation procedure from a coarse curvilinear grid block. It is evident that the
node on the edge of the fine mesh
node on the face of the fine mesh

node of the coarse mesh

node in the center of the fine mesh 
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η
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Fig. 1. (a) Illustration of refining a grid with grid metrics and (b) illustration of the four coarse nodes on a face.
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Fig. 2. (a) A refined grid using linear interpolation approach and (b) a refined grid using second-order averaging approach.
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curvature of the grid lines and mesh point clustering are not smoothly preserved. Fig. 2(b) shows a similarly refined grid
generated using the second-order averaging approach described above. In this case, it is clear that the refined grid preserves
the topology of the original mesh.

Further evidence of the capabilities of the refined mesh generation technique proposed here based on the grid metrics is
provided by considering the refinement of the multi-block grid for a pipe or duct with a circular cross-section as shown in
Fig. 3(a) and (b). In the figures, it can be seen that the refined mesh not only preserves the original stretching, but quite accu-
rately reproduce the curved arc of the boundary. Provided that the boundary can be represented by a continuous surface, this
approach helps to avoid the need for projecting the locations of the refined-mesh boundary nodes exactly onto the physical
geometry and preserves the smoothness of the interior grid lines. For the somewhat simple flow geometries considered here-
in, algebraic relations are used to ensure boundary nodes conform to the physical boundaries. In the more general case, spe-
cial treatment must be developed for dealing with the physical boundary geometry (i.e., projecting the refined-mesh
boundary grid points exactly onto the physical geometry), particularly when encountering some highly (or pathologically)
curved physical boundaries with meshes having high aspect ratios.

Each physical block can be refined in isolation. By using one-sided differences near the boundary, the proposed refine-
ment procedure based on the metrics does not require ghost node information from adjacent grid blocks during the refining
process. However, the ghost nodes need to be refined in order to maintain the same resolution as that of the physical nodes.
Note that the solution information of the ghost cells may be required during solution procedures. The ghost nodes are
grouped into sections corresponding to the physical blocks to which they belong. Each of these sections is refined in isolation
exactly as the rest of the physical block (to which they belong) would be.

Coarsening of the computational mesh can be accomplished in a straightforward manner by simply reversing the refine-
ment procedure. This is accomplished by the elimination of mesh points, and thereby reverting the fine mesh to its original
unrefined mesh. The coarsened mesh will retain only every second node of the fine mesh. Accordingly, eight solution blocks
are merged into one solution block for three space dimensions.
Fig. 3. (a) A refined segment of a pipe grid geometry using second-order averaging approach and (b) a close-up view of the refined grid showing that the
refined grid maintains the original stretching.
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5.2. Refinement criteria

Solution-directed mesh-refinement requires criteria for deciding where to refine or coarsen the mesh. A key issue is to
reliably determine whether a solution is acceptable and ensure that the error concerning physical quantities of interest
has been brought below a prescribed tolerance. If this is not the case, refinement criteria can be used to generate a new com-
putational mesh on which a more accurate numerical solution can be obtained. In this study, a heuristic set of refinement
criteria based on our physical understanding of the flow properties of interest is used (the so-called physics-based refine-
ment criteria). For the non-reacting flows considered here, measures �1 / j~rqj; �2 / j~r �~uj; �3 / j~r�~uj, are used in the
decision to refine or coarsen a solution block. These three quantities correspond to local measures of the density gradient,
compressibility, and vorticity of the mean flow field and enable the detection of contact surfaces, shocks, and shear layers.
For combusting flows, additional measures were identified for directing the mesh adaption. Additional measures,
�4 / j~rkj; �5 / j~rxj; �6 / j~rTj; �7 / j~rcnj, are used. The first two measures correspond to gradients of the specific turbu-
lent kinetic energy and dissipation rate per unit turbulent kinetic energy, respectively, and relate to the structure of the tur-
bulent field. The last two quantities measure the gradients of mean temperature and mean concentration for species n,
respectively, and provide reliable detection of flame fronts and combustion zones for reactive flows. In particular, a specific
flame marker, H2O, was used as a indicator during adaptive mesh refinement for flame simulations. In addition, for the res-
olution of turbulent wall boundary layers, the quantity, yþ, a dimensionless distance from the wall surface, can also be used
as a measure to direct the refinement. A smaller yþ indicates that the location is closer to the wall surface. Given a threshold
for yþ based on the flow property and geometry characteristics, together with other refinement measures above, one can
expect the AMR procedure to refine the mesh so as to resolve wall boundary layers.

It is recognized that the current set of refinement measures is by no means optimal, but experience has shown that it
generally works well for the flow problems considered in this study. One deficiency of the proposed set of refinement mea-
sures is that it does not provide a reliable criterion for terminating the refinement process. An alternative strategy for adap-
tive mesh refinement relies on equidistribution of solution error based on local estimates of the gradient and curvature of the
solution [88,89,23,27–31]. Although not implemented herein, this methodology has been applied to steady
[24,90,91,25,26,88,89,23,27–31] and unsteady [46,28] combustion simulations. Note however, in most applications involv-
ing nonlinear partial-differential equations, selecting the error indicators is not straightforward and sometimes, the error
indicators lack theoretical justifications, as noted in [92]. Chen [89] reviewed a number of strategies on mesh adaptation
from a mathematical point of view and compared their performances in solving nonlinear diffusion models. Venditti and
Darmofal [93–95] proposed an adjoint error estimation approach and a more conservative criterion for adaption based on
residual errors that lead to improvements in the quality of the error estimates.

5.3. Solution block connectivity

A flexible block-based hierarchical tree-like data structure is used herein to maintain the connectivity of the solution
blocks in the multi-block mesh. Fig. 4 depicts a multi-block hexahedral AMR mesh consisting of solution blocks at various
levels of refinement and the corresponding octree data structure. The octree data structure developed here naturally keeps
track of the refinement level and connectivity between grid blocks during isotropic refinement processes. Although it is not
strictly anisotropic, the refinement approach here preserves original stretching of the mesh and allows for anisotropic mesh
and improved treatment of thin boundary and shear layers. Note that strictly anisotropic mesh adaption strategy has been
considered by other researchers [64,96,97] and a hierarchical binary-tree data structure [64] and/or an indexing scheme for
Cartesian mesh can be used to keep track of the grid connectivity [96,97].

Neighbour information of each block is required in order to exchange solution and/or geometry information during the
solution procedure. Obviously, adaptive mesh refinement complicates the process for determining neighbouring blocks. The
searching algorithm is based on existing knowledge of neighbouring solution blocks that is stored in the octree data struc-
ture. In other words, before any refinement process, it is assumed that each block has all of its neighbour information. This
knowledge is used to understand the relative orientation between two branches of blocks, with one branch containing a work
block of interest and the other containing the neighbour block of interest, and to define a so-called ‘‘bridge” between two
branches (a pointer that provides connection to two different branches of the tree: in this case, work and neighbour
branches).

Consider execution of the AMR process at a given point during the solution procedure. The neighbour information for
many of the solution blocks has been changed due to the coarsening and refinement process. The neighbouring blocks on
the 26 boundary elements (6 faces, 12 edges and 8 vertices) of a given block, labelled the work block, must be found and
the neighbour information, such as block number, relative refinement level, and orientation, need to be stored for future
information exchange (message passing) between grid blocks. The number of neighbour blocks depends on the resolution
change across a boundary element. If there is no resolution change, an interior corner, edge, and face element can only have
one neighbouring block. If there is a resolution change (the maximum change in resolution is restricted to 2:1), each of the
corner boundary elements can only have one neighbour block; otherwise there are 2 and 4 neighbouring blocks for the edge
and face boundary elements, respectively.

The status of refinement/coarsening flags of both the work block and its neighbour block are first checked. The status of
work block can be flagged for either ‘‘no change” or ‘‘refinement”, or ‘‘coarsening”, so does its neighbour block. Therefore,



Fig. 4. Multi-block hexahedral AMR mesh showing solution blocks at various levels of refinement and the corresponding octree data structure.
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there are nine possible combinations of the relative refinement status between the work block and its neighbour block. Fig. 5
illustrates the case where the work block (blue) is flagged for ‘‘refinement” and the neighbour block is flagged for ‘‘no change”.
The work block can have a previous neighbour (dark red) with refinement level of n � 1 or n. Note that here n is defined to be
the current refinement level, a refinement level of n � 1 implies one level coarser than level n, and a refinement level of n + 1
indicates one level finer than the level n. If the previous neighbour level is at level n � 1, the work block needs to ascend the
tree to its parent to retrieve its own sector information first and then traverse the tree to the neighbour branch by using the
bridge built between the work and neighbour branches at level n � 1. The neighbour branch is then descended to obtain the
appropriate neighbour information (the appropriate neighbour’s sector is in the opposite direction of that used to connect to
"Work" branch "Neighbour" branch

Level n

Level n+1
search path − bridge

search path − down 

search path − up 

previous neighbour 

"Work" branch "Neighbour" branch

Level n

Level n−1

search path − up 

previous neighbour 

search path − bridge

search path − down 

Fig. 5. The refinement flags for the work block (blue) and its previous neighbour block (dark red) are ‘‘flagged for no change” and ‘‘flagged for refinement”,
respectively; (a) possibility I: a previous neighbour block (dark red) with refinement level of n � 1 and (b) possibility II: a previous neighbour block (dark red)
with refinement level of n. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the work block). If the previous level of the neighbour block is n, then a bridge is defined between this work block and this
previous neighbour block at level n. Neighbour information can then be obtained by first following the bridge to the neigh-
bour branch and then descending the tree to determine the neighbour information for newly created block. Once the bridge
is defined, the routine can be utilized by the work block to retrieve its neighbour’s information. The rest combinations of the
relative refinement status between the work block and its neighbour block can be treated with similar logic and the details
will not be repeated herein. Note that the neighbour information for all the solution blocks must be updated after the entire
neighbour searching procedure is complete.

5.4. Computation of unstructured root-block connectivity

The connectivity between unstructured blocks needs to be either specified or computed in order to carry out message
passing of solution information between blocks. Unlike a structured arrangement of blocks, where the block connectivity
can be easily obtained since the connectivity is stored logically in two- and three-dimensional arrays, unstructured connec-
tivity and orientation have to be computed. For each block, there are 26 boundary elements (8 vertices, 12 edges and 6 faces)
and connectivity of each element is computed and stored for reuse. The unstructured root–block connectivity is computed
once and this connectivity information is then stored and propagated down the tree.

The logic employed in this numerical algorithm for representing the unstructured connectivity follows the methodology
proposed in the CFD General Notation System (CGNS) [98]. To illustrate the unstructured connectivity between blocks, con-
sider the grid blocks shown in Fig. 6. The following steps are involved in obtaining the block connectivity:

� blocks are matched to one another using block faces defined from coordinate information at the corners of the hexahedral
blocks;

� transformation matrices and offsets describing the relative orientations of two blocks sharing a matching face are
computed;

� neighbour information across each boundary element of a block is then stored, including the neighbour index, matching
faces, and orientation.

A transformation matrix is used to relate the i; j; k (coordinates of computational frame) indices used for accessing the
solution data contained in arrays of the two adjacent structured solution blocks. The transformation matrix itself has full
rank and contains elements with possible values of +1, �1 and 0; the matrix is orthonormal and its inverse is its transpose.
The transformation matrix is stored in a compact form as [a,b,c]. For example, suppose the computational coordinates of the
centre block in Fig. 6 is the reference system, then the values of [a,b,c] = [+2,+1,�3] indicate the orientation of its right
neighbour block in this reference system is [j, i,�k ]. In other words, an increase in the indices i and j for this block of interest
corresponds to a increase in index j and i for its neighbour block to the right, respectively. Furthermore, an increase in k in
this block corresponds to a decrease in k for its neighbour. Since computation of the connectivity is based on block coordi-
nate information only, it is not dependent on additional information from the grid generator; however, abutting 1-to-1 block
connectivity is required. The connectivity and orientation computed from the original mesh are then stored after computa-
tion and this information can be reused, even if some of the original grid blocks are later refined.

Unstructured root–block connectivity can present some additional challenges associated with neighbour information for
the edge and corner boundary elements. The number of neighbour blocks sharing each of these elements can vary and in this
work is assumed to be up to a maximum of 3, 4 or 5 depending on the structure of the multi-block mesh. Special consider-
ation is also required for gradient reconstruction for these cases. To illustrate this matter, a two-dimensional case is used as
i

j

j

i

Fig. 6. Illustration of an unstructured connectivity.
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an example. In Fig. 7, the cell in block ‘‘I” marked with a filled-circle is under gradient reconstruction, the cells marked ‘‘x”
denote the ghost cells that provide information for reconstruction, and the cell marked with an empty circle is the corner
ghost cell. For the case of the unstructured connectivity, the neighbour block ‘‘N” may be missing along with the corner ghost
cell; accordingly, the reconstruction procedure will not utilize that corner cells. In the proposed approach, a procedure is
implemented to check the unstructured connectivity for each bock, and ensure that only available ghost cells are involved
in the gradient reconstruction for situations with three abutting blocks. In the case of five blocks sharing a corner, there are
more corner ghost cells being involved in the gradient reconstruction procedure, and similarly, a procedure is used to take
this situation into account.

5.5. Exchange of solution information between blocks

Solution information is shared between adjacent blocks having common interfaces by employing two additional layers of
overlapping ‘‘ghost” cells as shown in Fig. 8. The ghost cells provide solution information from neighbouring blocks and are
used to facilitate communications between solution blocks. When the ghost cells are updated, buffers are used to facilitate
the exchange of messages between blocks. Naturally, unstructured connectivity complicates this exchange of information.
Our strategy is to load a one-dimensional buffer with the sending block’s information, but with that information re-ordered
according to the neighbouring block’s orientation. The unloading of the buffer is therefore straightforward.

Additional inter-block communication is also required at interfaces with resolution changes to strictly enforce the flux
conservation properties of the finite-volume scheme [6,7]. In particular, the interface fluxes computed on more refined
blocks are used to correct the interface fluxes computed on coarser neighbouring blocks and ensure that the solution fluxes
are conserved across block interfaces.

6. Domain decomposition and parallel implementation

Domain decomposition involves decomposing a computational mesh and distributing the sub-meshes among the proces-
sors in a multi-processor architecture. The computational domain of interest is a multi-block mesh, which lends itself nat-
urally to domain decomposition. The solution blocks can be easily distributed to the processors, with more than one block
permitted on each processor.

Some strategies can be implemented to achieve effective load balancing and reduce communication costs. For homoge-
neous architectures (identical processors), as used herein for all parallel computations, an effective load balancing is
achieved by exploiting the self-similar nature of the solution blocks and simply distributing the blocks equally among the
processors. For heterogeneous parallel machines, such as a network of workstations, a weighted distribution of the blocks
can be adopted to preferentially place more blocks on the faster processors and less blocks on the slower processors. In some
cases, the amount of work for each block might be variable. For example, the prediction of turbulent combusting flows can
result in some blocks being significantly more involved in performing finite-rate chemical kinetics calculations. In such sit-
uations, it may become necessary to design a weighting algorithm based on the computation time for each solution block.
The domain decomposition procedure can then detect and handle in a dynamic fashion load imbalances which may occur
during the code execution.



Placing nearest-neighbour blocks on the same processor can also help to reduce the overall communication costs. This is
usually realized by utilizing space-filling curves which can provide rather high quality partitions at very low computational
costs [99,100] due to their ‘‘proximity preserving” mappings of a multidimensional space to one-dimensional space. In this
work, a Morton ordering space-filling curve is adopted to provide nearest-neighbour ordering of the solution blocks in the
multi-block hexahedral AMR meshes, and improve the parallel performance of the proposed solution method [100].

The parallel implementation of the block-based AMR scheme was developed using the C++ programming language [101]
and the MPI (message passing interface) library [102]. Use of these standards greatly enhances the portability of the com-
puter code. Inter-processor communication is mainly associated with block interfaces and involves the exchange of
ghost-cell solution values and conservative flux corrections at every stage of the multi-stage time integration procedure.
Message passing of the ghost-cell values and flux corrections is performed in an asynchronous fashion with gathered wait
states and message consolidation.
7. Verification of proposed numerical scheme

The parallel implementation of the proposed parallel AMR scheme was carried out on a parallel cluster of 4-way Hewlett–
Packard ES40, ES45, and Integrity rx4640 servers with a total of 244 Alpha and Itanium 2 processors. A low-latency Myrinet
network and switch are used to interconnect the servers in the cluster. Partial verification of some key aspects of the pro-
posed solution method was carried out to verify the implementation of the inviscid operators, the viscous operators, the tur-
bulence two-equation k–x model implementation, and chemical kinetics. To keep this section brief, verifications of viscous
operator and turbulence model implementations are given here.
7.1. Three-dimensional laminar Couette flow

The computation of non-reacting laminar Couette flow in a channel with a moving wall was considered in order to dem-
onstrate the accuracy of the viscous spatial discretization scheme. Couette flow with an upper wall velocity of 29.4 m/s (note
that the moving wall is located at y ¼ ymax) and a favourable pressure gradient of dp=dx ¼ �3177 Pa=m was investigated on a
0.2 m by 0.001 m by 0.001 m computational domain. For the fine mesh, there were 8 solution blocks, each consisting of
60	 80	 2 cells in x, y, and z directions. The flow field was initialized with a previously obtained two-dimensional solution
and the steady-state three-dimensional solution was reached with a total wall-clock time of 10 h. We have also estimated
the memory requirements using profiling tools for all the cases and the required memory is estimated at 2 Kb per cell. Note
that the optimization of the memory has yet to be performed. In particular, many values (such as primitive states) are stored
even though it may be more beneficial to recompute them given the trends of more recent architectures towards less mem-
ory per CPU core.

The predicted velocity profile is given and compared to the exact analytic solution for this nearly incompressible isother-
mal flow in Fig. 9. Note that the exact solution is based on the assumption that the flow is incompressible (q = constant,
Ma! 0). It can be seen that the predicted results of the three-dimensional algorithm match well with the analytic solution
and the two-dimensional predictions, providing support for that the implementation of the numerical viscous flux operators
in the proposed solution scheme is correct.
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7.2. Verification of k–x turbulence model

The verification of the implementation of the k–x turbulence model for non-reacting turbulent flows was performed by
comparing numerical results to the experimental data of Laufer [103] for non-reacting, fully-developed turbulent flow in a
circular cross-section pipe. The working gas was air. The radius of the pipe was 0.123 m and the Reynolds-number based on
the center-line velocity, Uo ¼ 30:48 m=s, was Re ¼ 5:0	 105.

The numerical predictions, shown in Fig. 10, were obtained by using three types of near-wall turbulence treatment: (1)
low-Reynolds-number formulation, i.e., integrating the transport equations for the two-equation turbulent model through
the laminar sublayer directly up to the solid wall; (2) standard wall function; and (3) automatic near-wall treatment with
a switching procedure (Eq. (10)). The calculations were performed on a quarter of a pipe geometry. The steady-state two-
dimensional solution was used as an initial guess for the three-dimensional calculations. Numerical results were obtained
from three meshes. There were 80 cells in the radial direction for the calculation with the low-Reynolds-number formula-
tions, 40 cells for the calculation with the automatic switching function, and 32 cells for the standard wall function. The
meshes are stretched and clustered toward the solid wall and the first yþ1 values are 0:45 and 16:6 for the low-Reynolds-
number formulation and the automatic near-wall treatment, respectively. There were two cells in the viscous sublayer
for the calculation using the low-Reynolds formulation. For steady-state solutions, the total wall-clock time for calculations
using the wall function and low-Reynolds-number formulation was 18 and 26 h, respectively.

The predictions of the mean axial velocity and turbulent kinetic energy from the three types of near-wall turbulence
treatment are compared to the experimental data of Laufer [103] in Figs. 10a and 10(b). In general, the numerical results
for the three different wall treatments are very close to one another. Good agreement between the experimental data and
numerical results is also observed. Fig. 10(b) indicates that predictions of the turbulent kinetic energy from the three ap-
proaches are almost exactly the same except in the region close to the solid wall, which is not surprising because of the dif-
ferent near-wall treatments. Fig. 10(c) shows a close-up of this feature. Clearly, the low-Reynolds-number formulation has
the best prediction of the peak value of turbulent kinetic energy. The wall function under-predicts the turbulent kinetic en-
ergy more than the others. The profile computed from using the automatic switching function falls in between and indicates
that the automatic near-wall treatment appears to work well. Fig. 10(d) shows the numerical prediction of the typical veloc-
ity profile for the turbulent boundary layer of the pipe flow. Good agreement between the numerical and the experimental
data is observed. It is evident that the k–x model is able to reproduce the characteristic features of these two fully-developed
non-reacting turbulent flows.

8. Numerical results of bluff-body burner flows

The International Workshop on Measurement and Computation of Turbulent Non-premixed Flames [104] has established
an internet library of well-documented experimental database for turbulent non-premixed flames that are appropriate for
combustion model verification and validation. The Sydney bluff-body burner configuration that forms part of this experi-
mental database has data available for both non-reacting and reacting cases. The configuration for the Sydney bluff-body
burner is shown in Fig. 11. The bluff-body has a diameter of Db ¼ 50 mm and is located in a co-axial flow of air. Various gases
can be injected through an orifice of diameter 3.6 mm at the base of the cylindrical bluff body. The bluff-body stabilized
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flames have a recirculation zone close to the base of the bluff body. This burner configuration produces a relatively extensive
and complex turbulent field and causes intense mixing between the reactants and combustion products. The stabilization
mechanisms resemble those of industrial combustors and yet the boundary conditions for the bluff-body flames are simple
and well-defined, making them well suited for investigating in great detail the capabilities of models for turbulent non-pre-
mixed diffusion flames.

The Sydney bluff-body burner has been investigated and/or used for verification and validation purposes in several recent
studies (e.g., Dally et al. [105–111] and Turpin and Troyes [112]). The proposed parallel AMR algorithm has been applied to
the solutions of both non-reacting and reacting flow cases. The cases investigated herein are a non-reacting (cold) air flow
case for understanding the re-circulating flow field structure at the base of the burner and a reacting (hot) case. In the cold
non-reacting bluff-body burner flow case, air is injected through the orifice at the base of the cylindrical bluff body with a
temperature of 300 K and a bulk velocity of 61 m/s. The bulk velocity and temperature of the co-flowing air are 20 m/s and
300 K, respectively. The Reynolds and Mach numbers based on the high-speed jet are Re ¼ 193;000 and Ma = 0.18. For the
reacting case, methane ðCH4Þ is injected through the orifice at the base of the cylindrical bluff body with a temperature of
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300 K. The bulk velocities of the co-flowing air and methane fuel are 25 m/s and 108 m/s, respectively. The Reynolds and
Mach numbers of the methane jet are Re = 315,000 and Ma = 0.24.
8.1. Boundary conditions

At the inflow planes of the computational domain for both the fuel jet and the co-flow air, Dirichlet conditions are used
for flow quantities such as density, velocities, turbulent kinetic energy, the dissipation rate of the turbulent kinetic energy,
and species concentrations. A Neumann condition is used for the pressure. The symmetry condition is applied on the centre
line and a free-stream condition is imposed on the shroud boundary (note that the shroud does not extend beyond the height
of the bluff-body burner). A no-slip boundary condition is applied to the wall of the annulus pipe for the co-flow air. At the
outflow plane, the ambient pressure is specified and Neumann type boundary conditions are applied for all other flow quan-
tities. The co-flow air boundaries were set wide enough to include the full boundary layer on the co-flow side and to ensure
that the boundary specifications do not influence the jet. The diameter of the co-flow inlet pipe is about 3Db and the axial
length of the computational domain is 6Db, where Db is the bluff-body diameter.

In order to intentionally avoid sharp changes in velocity for computational purposes, a power law is used to specify the
initial axial velocity profiles in both the jet and the co-flow and thereby approximate a fully-developed turbulent pipe flow.
Additionally, the initial radial velocities are taken as zero [104]. The axial distance of the annulus pipe was extended further
upstream to ensure that fully developed pipe flow conditions prevail at the exit plane of the annulus pipe. Therefore, the base
of the bluff body is located at z = 0.1 m. Note that in the case of the three-dimensional simulations, the flow fields were ini-
tialized with the steady-state numerical solutions obtained from the two-dimensional calculations. Overall, the calculations
run about 4 and 6 weeks (total wall-clock time) for the non-reacting cold and the reacting hot flows to reach steady-state
solutions, respectively.

A cylindrical-shaped axisymmetric computational domain of the bluff-body burner can be used for the three-dimensional
simulations as shown in Fig. 12. Moreover, the Farve/Reynolds-averaged mean flow is statistically axisymmetric. To reduce
the computational expense, a quarter section mesh of the bluff-body configuration as illustrated in Fig. 13 was used. How-



ever, within the quarter mesh, our numerical process deviates the axisymmetry. The grid does not align with the Cylindrical
coordinate system as shown in Fig. 14 (see the mesh topology near the fuel inlet.) and the mesh cannot be ‘‘collapsed” along
the azimuthal direction. The mathematical system of Farve-averaged Navier–Stokes equations is formulated in a three-
dimensional Cartesian coordinate system. Hence, the full three-dimensional capabilities of the algorithm are realized to
compute the solution to this axisymmetric problem. In other words, the model is not axisymmetric and we are using fully
three-dimensional techniques to obtain the solution to an axisymmetric problem. Reflective conditions are applied on both
planar boundary planes of the quarter mesh. The numerical results were obtained using an explicit 3-stage optimally-
smoothing time-marching scheme with a CFL number of 0.1. Typically, the momentum residual reduction was found to
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dicted, as compared to the experimental data. The computed and measured specific Reynolds stress v 0w0 profiles are also
compared in Fig. 19. The numerical values of v 0w0 are somewhat under-predicted in the relatively high mean-velocity
regions, but closer to the measured data in the low mean-velocity regions. It can be seen that there are under- and/or
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over-predicted regions close to the center-line and the solid wall boundaries. These regions either encompass or are in the
vicinity of the re-circulation zone. Re-circulation zones with complex turbulent structures are quite sensitive to the turbu-
lence modelling. A variety of RANS simulations have addressed the sensitivity of the results to the turbulence model and/or
combustion models [110,113–115,84,50]. The overall agreement between the predicted results from the current study and
the experimental data is thought to be quite reasonable and is comparable to other similar results found in the literature
[110,112,114].
8.3. Reacting hot flow

As a final case, a fully three-dimensional simulations of the reactive bluff-body burner flow with methane fuel injection
was considered. A quarter section of the three-dimensional grid was again used. Reactive flow-field predictions have been
performed on a sequence of three successively refined meshes, with each grid consisting of a number of 8	 8	 8 cell blocks.
The three computational grids consist of 56 blocks (28,672 cells), 133 blocks (68,096 cells), and 210 blocks (107,520 cells),
respectively. The refinement efficiency for the grids ranged from 0.7 to 0.9414. The sequence of the refined meshes in xz-
planes ðy ¼ 0Þ is shown in Figs. 20(a) and (d). Similar to the non-reacting case, the mesh resolution has a typical off-wall
spacing of the first computational cells nearest the wall in the range 0:47 < yþ < 1:2.
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Figs. 21(a) and (b) provide the computed distributions of mean mass fraction of CO2 and temperature in the xz-plane
ðy ¼ 0Þ for this turbulent non-premixed flame, respectively. The predicted flame structure is generally in very good agree-
ment with the experimental observations and the previous two-dimensional axisymmetric results [84]. Like the experimen-
tal flame, the numerical flame is quite elongated and three zones can be identified: the re-circulation, neck, and jet-like
propagation zones. A vortex structure is formed in the re-circulation zone and acts to stabilize the flame. The maximum com-
puted flame temperature is about 2100 K, which is close to the value of 2180 K observed in previous axisymmetric studies of
this bluff-body hot-flow case [84].

Fig. 21(c) and (d) compares the radial profiles of the predicted mean temperature and mass fraction of CO2 to the exper-
iments at a location of z=Db ¼ 1:92 downstream from the base of the bluff body. Additionally, the figures also show the
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Table 1
The parallel fraction of the program varies with increasing the number of processors.

CPU (s) 2 6 14 21 42

f 100% 100% 99.96% 100% 99.93%
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results of the mesh refinement study and indicate that the predicted mean quantities of CO2 mass fraction and temperature
do not change significantly as the mesh is refined from 68,096 cells to 107,520 cells. This provides confidence that the
numerical solution is converging toward a grid-independent result that agrees well with experiments. The predicted mean
temperature, 1628 K, and mass fraction of CO2, 0.095, at the location of z=Db ¼ 1:92; r=Rb ¼ 0:4 are comparable to the mea-
sured values of the flame temperature, 1120 K, and carbon dioxide concentration, 0.07. At the location of z=Db ¼ 1:92,
r=Rb ¼ 0:52, the predicted mean temperature, 940 K, and mass fraction of CO2, 0.04, are quite close compared to the mea-
sured values of the flame temperature, 810 K, and carbon dioxide concentration, 0.055. The comparisons shown in the figure
indicate that both the mean temperature and mass fraction of CO2 are generally well predicted considering the simplified
chemical kinetics and eddy dissipation model used for prescribing the interaction between turbulence and chemistry.

8.4. Parallel performance

The parallel performance of the algorithm has been assessed for the Sydney bluff-body burner flame, a fixed size problem
with a multi-block hexahedral computational mesh consisting of 42 solution blocks ð8	 8	 8Þ 21,504 cells. The parallel per-
formance was then measured using up to 42 processors. The strong scaling performance results shown in Fig. 22 indicate
that the parallel speedup remains essentially linear with an efficiency of 98% up to 42 processors. Table 1 provides an esti-
mate of the parallel fraction of the program using Amdahl’s law. The serial fraction remains particularly low (0.04–0.07%)
and the proposed algorithm can be seen to be well suited for scaling to larger numbers of processors. The parallel efficiency
for the three-dimensional case is particularly good due to the high ratio of computational work to communication time for
each processor. This feature will be generally true for most three-dimensional problems and provides strong support for the
use of the proposed block-based AMR approach for predicting three-dimensional combusting flows using parallel computer
architectures.

9. Conclusions and future research

A new highly parallelized AMR scheme has been described for obtaining steady-state solutions of three-dimensional tur-
bulent non-premixed combusting flows. The parallel AMR algorithm solves the system of PDEs governing turbulent com-
pressible flows of reactive thermally perfect gaseous mixtures using a fully coupled finite-volume formulation on body-
fitted multi-block hexahedral mesh. This compressible formulation can readily accommodate large density variations and
thermo-acoustic phenomena. The combination of a block-based AMR strategy, hierarchical tree data structure, and parallel
implementation has resulted in a highly scalable computational tool. The key original features of the proposed parallel AMR
algorithm are highlighted below.

(1) A new parallel AMR framework has been developed for performing solution-direction mesh adaptation of multi-block
body-fitted grids and applied to the prediction of turbulent reactive flows. The block-based AMR technique allows for
anisotropic grids and makes use of a flexible hierarchical tree data structure for the treatment of complex grid topol-
ogies having unstructured block connectivity. By design, the block-based approach also leads to a highly scalable and
efficient parallel implementation of the finite-volume solution scheme on multi-processor parallel clusters.

(2) A novel low-cost and computationally efficient technique has also been proposed for the generation of refined body-
fitted or curvilinear grid blocks which must be determined as part of the AMR process. The grid refinement procedure
makes use of standard grid metrics to preserve the original mesh topology, smoothness of the grid lines, and grid point
clustering of the body-fitted mesh.

(3) A quantitative evaluation of the parallel AMR algorithm with the features described above has been carried out for a
complex turbulent combusting flow having a relatively complex physical geometry (the bluff-body burner) and the
numerical predictions were compared to experimental data. This numerical study demonstrates the validity and
potential of the parallel AMR approach for predicting fine-scale features of complex turbulent non-premixed flames.

There are a number of avenues for future research that have arisen from or during the course of this work. They are as
follows:

� Investigation of Newton–Krylov–Schwarz (NKS) strategies to improve the efficiency of the time integration procedure
while maintaining high parallel efficiency. Note that the current time-marching scheme as described is certainly not opti-
mal, particularly for the three-dimensional case, but the proposed block-based AMR scheme is well suited to a NKS treat-
ment. The NKS approach could be combined with a multigrid or multi-level method.
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� Inclusion of more sophisticated combustion modelling to produce more accurate flame predictions including improved
modelling of turbulence/chemistry interaction, chemical kinetics, soot formation and transport, radiation transport and
liquid fuels [58,116,3,117].

� Investigation of refinement criteria based on reconstruction error estimation.
� Investigation of anisotropic grid refinement based on directional dependent refinement and a binary tree data structure to

enhance the efficiency of the AMR algorithm.
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